Calculadora de ecuaciones exactas

solucionador de ecuaciones diferenciales

Parece que estás en un dispositivo con un ancho de pantalla «estrecho» (es decir, probablemente estás en un teléfono móvil). Debido a la naturaleza de las matemáticas de este sitio, es mejor verlo en modo apaisado. Si su dispositivo no está en modo apaisado, muchas de las ecuaciones se saldrán por el lateral de su dispositivo (debería poder desplazarse para verlas) y algunos de los elementos del menú quedarán cortados debido al estrecho ancho de la pantalla.

El siguiente tipo de ecuaciones diferenciales de primer orden que veremos son las ecuaciones diferenciales exactas. Antes de entrar en los detalles de la resolución de las ecuaciones diferenciales exactas, probablemente sea mejor trabajar con un ejemplo que nos ayude a mostrar lo que es una ecuación diferencial exacta. También mostrará algunos de los detalles detrás de las escenas que por lo general no se molestan en el proceso de solución.

La mayor parte del siguiente ejemplo no se hará en ninguno de los ejemplos restantes y el trabajo que pondremos en los ejemplos restantes no se mostrará en este ejemplo. El objetivo de este ejemplo es mostrar lo que es una ecuación diferencial exacta, cómo usamos este hecho para llegar a una solución y por qué el proceso funciona así. La mayoría de los detalles de la solución real se mostrarán en un ejemplo posterior.

calculadora de problemas de valor inicial

A pesar de lo orgullosa que estaba mi madre cada vez que la veía animarme después de que corriera en un touchdown desde 5 yardas, siempre estaba igual de preocupada por mis notas. Decía que si no subía mis notas, nadie me daría una beca, sin importar cuántas yardas de carrera consiguiera. Incluso cuando mi entrenador me mostró su programa, no quise saber nada de él. Pero empezó a tener sentido. Ahora, hago álgebra con tanta confianza como juego al fútbol y mi último año va a ser el mejor.

Los estudiantes que luchan con todo tipo de problemas de álgebra descubren que nuestro software es un salvavidas. Aquí están las frases de búsqueda que los buscadores de hoy utilizaron para encontrar nuestro sitio. ¿Puedes encontrar la tuya entre ellas?

calculadora de soluciones generales

Sea que las funciones \(P\left( {x,y} \right)\Ny \N(Q\left( {x,y} \right)\Ntienen derivadas parciales continuas en un determinado dominio \N(D.\NLa ecuación diferencial \N(P\left( {x,y} \right)dx + Q\left( {x,y} \right)dy = 0\Nes una ecuación exacta si y sólo si

En el paso \(3,\) podemos integrar la segunda ecuación sobre la variable \(y\) en lugar de integrar la primera ecuación sobre \(x.\) Después de la integración tenemos que encontrar la función desconocida \({\psi \left( x \right)}.\N)

\frac{{parcial Q}}{parcial x}}= \frac{parcial }{parcial x}}left( {{x^2} + 3{y^2}} \ right) = 2x,\;\frac{parcial P}{parcial y}} = \frac{parcial }{parcial y}left( {2xy} \right) = 2x.\f] \[\frac{{parcial u}} {{parcial y}} = \frac{{parcial}} {{parcial y}}left[ {{x^2}y + \varphi \left( y \right)} \right] = {x^2} + 3{y^2},\N-; \N-flecha derecha {x^2} + \varphi’\a la izquierda( y \a la derecha) = {x^2} + 3{y^2},\\N;\N-flecha derecha \N-varphi’\Nizquierda( y \Nderecha) = 3{y^2}.\N-flecha derecha] \N – [\frac{{parcial Q}} {{parcial x}} = \frac{parcial }{{parcial x}}left( {3{y^2}} – x – 2} \\N – derecha) = – 1,\N-; \N – \N – P} {{parcial y}} = \frac{parcial} {{parcial y}}left( {6{x^2}} – y + 3} \N – 1. \]

calculadora de ecuaciones diferenciales separables

Esta calculadora en línea le permite resolver ecuaciones diferenciales en línea. Suficiente en el cuadro para escribir su ecuación, denotando un apóstrofe ‘ derivada de la función y pulse «Resolver la ecuación». Y el sistema se implementa sobre la base del popular sitio WolframAlpha dará una solución detallada a la ecuación diferencial es absolutamente libre. También puede establecer el problema de Cauchy a todo el conjunto de posibles soluciones para elegir las condiciones iniciales dadas privadas apropiadas. Problema de Cauchy introducido en un campo separado.

Por defecto, la ecuación de la función y es una función de la variable x. Sin embargo, puede especificar su marcado una variable, si se escribe, por ejemplo, y(t) en la ecuación, la calculadora reconocerá automáticamente que y es una función de la variable t. El uso de una calculadora, usted será capaz de resolver las ecuaciones diferenciales de cualquier complejidad y tipos: homogénea y no homogénea, lineal o no lineal, de primer orden o ecuaciones de segundo y más alto orden con variables separables y no separables, etc. La solución de la ecuación de difusión. se da en forma cerrada, tiene una descripción detallada. Las ecuaciones diferenciales son muy comunes en la física y las matemáticas. Sin su cálculo no puede resolver muchos problemas (especialmente en la física matemática).